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CONVECTION OF A BINARY MIXTURE UNDER CONDITIONS

OF THERMAL DIFFUSION AND VARIABLE TEMPERATURE GRADIENT

UDC 532.51.013:536.24B. L. Smorodin

Instability of a plane horizontal layer of an incompressible binary gas mixture stratified in the gravity
field under the action of a transverse temperature gradient modulated in time is studied. The case
of solid impermeable boundaries of the layer, where the flux of matter vanishes, is considered. The
analysis is based on the Floquet method applied to linearized equations of convection in the Boussinesq
approximation. It is shown that there are regions of parametric instability at finite frequencies. In
addition to the synchronous or subharmonic response to an external action, the instability may be
related to quasi-periodic disturbances. Depending on the amplitude and frequency, modulation can
stabilize the unstable basic state and also destabilize the equilibrium of the fluid. The threshold values
of convection for modulations of temperature and translational vertical vibrations are compared.

Introduction. The presence of a variable parameter in a hydrodynamic system can significantly affect
its stability [1], which is used to control fluid motion in various technological processes. Variable electric and
magnetic fields, temperature gradients, or vibrations are various means of periodic actions on mechanical systems,
in particular, fluids.

The effect of modulation of the boundary temperature on convective instability of a horizontal layer of a
fluid was studied in [1–3]. The basic state of the system is quasi-equilibrium, where the fluid is stationary, and
a heat wave propagates between the boundaries of the layer. The instability of this state may be related to two
types of critical disturbances. The period of disturbances of the first type coincides with the period of the external
action (synchronous response of the system), and the period of disturbances of the second type is twice as large
(subharmonic response).

If there are vibrational modes of instability in a convective system in the absence of modulation of external
fields, a variable action leads to origination of a new type of disturbances — quasi-periodic disturbances characterized
by two frequencies: the frequency of the external field and the modified eigenfrequency of neutral oscillations. An
example of convective systems with a vibrational mode of instability is a binary mixture in the range of parameters,
where the anomalous effect of the Soret thermal diffusion is manifested. The influence of transverse translational
vibrations on convective stability of a binary mixture was studied earlier [4] for high frequencies, where the amplitude
and frequency of oscillations of the system are not independent parameters. In the case of finite frequencies of
vibrations, the instability can be caused by resonance effects [5].

In the present paper, we consider a parametric action on a horizontal layer of a binary mixture with thermal
diffusion. The case of emergence of convection in a constant gravity field in the presence of a variable temperature
difference at the boundaries is examined.

1. Formulation of the Problem. We consider a binary mixture that fills a plane horizontal layer bounded
by perfectly heat-conducting solid impermeable parallel planes z = ±h (h is the half-thickness of the layer), where
different temperatures that vary as T (±h) = ∓Θ(η1 + η2 cos Ωt) are sustained. Here Θ is the characteristic scale
of temperature, η1 and η2 are the relative amplitudes of the constant and variable components of the temperature
difference at the boundaries, Ω is the cyclic modulation frequency, and t is the time. In the case considered, η1

can take two values: η1 = 0 for temperature modulation at the boundaries with a zero mean value and η1 = 1 for
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modulation at a constant background. The cases Θ > 0 and Θ < 0 correspond to heating from below and from
above, respectively. In the present problem, the concentration gradient even in the initially homogeneous mixture
is formed because of the temperature gradient and Soret thermal diffusion.

We write the equation of state of the binary mixture in the form

ρ = ρ̄(1− βTT − βCC),

where ρ̄ is the density of the mixture at mean values of temperature and concentration, T and C are small deviations
of temperature and concentration from the mean values, and βT and βC are the coefficient of thermal expansion
and the concentration coefficient of density (if C is the concentration of the light component, then βC > 0).

To nondimensionalize the variables, we introduce the scales of the distance h, time h2/ν, velocity ν/h,
temperature Θ, concentration βTΘ/βC , and pressure ρ̄ν2/h2 (ν and χ are the kinematic viscosity and temperature
diffusivity).

The dimensionless system of equations of convection for the binary mixture in the Boussinesq approximation
acquires the form

∂v

∂t
+ (v∇)v = −∇p+ ∆v + Gr(T + C)n,

∂T

∂t
+ v∇T =

1
Pr

∆T, div v = 0, n = (0, 0, 1),

∂C

∂t
+ v∇C =

1
Sc

∆(C − εT ),

where v is the velocity, p is the pressure, Gr = gβTΘh3/ν2, Pr = ν/χ, and Sc = ν/D are the Grashof, Prandtl,
and Schmidt numbers, respectively, ε = −βCα/βT is the Soret parameter, D and α are the coefficients of diffusion
and thermal diffusion, and ω = Ωh2/ν is the dimensionless modulation frequency.

In studying the convection of the binary system, we considered different variants of boundary conditions. It
seems that the test conditions are in best agreement with the case of impermeable solid boundaries [6], where the
flux of matter vanishes:

z = ±1: v = 0, T = ∓(η1 + η2 cosωt),
∂C

∂z
− ε ∂T

∂z
= 0. (1)

The problem admits a quasi-equilibrium solution, where the fluid is at rest (v0 = 0), and its remaining
characteristics vary in time and space: T0 = T0(z, t), p0 = p0(z, t), and C0 = C0(z, t). In what follows, the explicit
expression for the pressure p0 is not used. The unsteady distributions of temperature T0(z, t) and concentration
C0(z, t) satisfy the one-dimensional equations of heat conduction and diffusion

Pr
∂T0

∂t
=
∂2T0

∂z2
, Sc

∂C0

∂t
=
∂2C0

∂z2
− ε ∂

2T0

∂z2

and the corresponding boundary conditions (1). The temperature distribution under quasi-equilibrium conditions
is determined by superposition of the linear profile and two heat waves propagating from the boundaries inside the
fluid. The concentration distribution is determined by the temperature distribution due to the thermal diffusion
effect:

T0 = −η1z − Re
[
(η2 sinh qz/sinh q) exp (iωt)

]
,

C0 = −η1εz + Re
[ εη2

(q2 − r2) sinh q

(qr cosh q sinh rz
cosh r

− q2 sinh qz
)

exp (iωt)
]
, (2)

q = (1 + i)
√
ωPr /2, r = (1 + i)

√
ωSc/2.

To study the stability of the basic state (2), we consider its small perturbations v, T ′, C ′, and p′ and introduce
a new variable H ′ = C ′ − εT ′. After linearization, we obtain a system of equations and boundary conditions for
disturbance evolution:

∂v

∂t
= −∇p+ ∆v + Gr(T ′(1 + ε) +H ′)n,

∂T ′

∂t
+ v∇T0 =

1
Pr

∆T ′,

∂H ′

∂t
+ v(∇C0 − ε∇T0) =

1
Sc

∆H ′ − ε

Pr
∆T ′, div v = 0,

z = ±1: v = 0, T ′ = 0,
∂H ′

∂z
= 0.
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Eliminating the pressure and horizontal components of velocity, the perturbations of the vertical velocity vz, tem-
perature T ′, and function H ′ are written as vz

T ′

H ′

 =

 w(z, t)
θ(z, t)
ξ(z, t)

 exp (ikxx+ ikyy),

where w, θ, and ξ are the amplitudes and k is the wave vector that characterizes the periodicity of disturbances in
the plane of the layer (k2 = kx

2 + ky
2).

For disturbance amplitudes, we obtain the problem
∂Dw

∂t
= D2w − k2Gr(θ(1 + ε) + ξ),

∂θ

∂t
=

1
Pr

Dθ − w∇T0,

(3)
∂ξ

∂t
=

1
Sc
Dξ − ε

Pr
Dθ − w(∇C0 − ε∇T0), D =

∂2

∂z2
− k2.

The boundary conditions for the amplitudes on the solid isothermal planes are

z = ±1: w = 0, w′ = 0, θ = 0, ξ′ = 0, (4)

where the prime denotes the derivative with respect to the transverse coordinate z.
System (3), boundary conditions (4), and conditions of periodicity in time for all variables determine the

eigenvalue problem for the Grashof number as a function of the remaining parameters. The boundaries of convective
instability determined by the conditions of existence of periodic solutions of system (3) can be found using the
classical Floquet method.

2. Method of the Solution. The temperature and concentration gradients in the basic state are even
functions of the vertical coordinate z. Hence, the eigenfunctions of problem (3) are divided into two classes: odd
and even in terms of z. It is known that “one-storeyed” disturbances corresponding to even eigenfunctions are most
unstable [1]; therefore, the disturbances are approximated by even spatial basis functions with time-dependent
coefficients:

w =
M−1∑
m=0

a2m(t)w2m, θ =
M−1∑
m=0

b2m(t)θ2m, ξ =
M−1∑
m=0

c2m(t)ξ2m. (5)

As the basis functions for the vertical velocity, temperature, and concentration, we use the eigenfunctions of
the fourth- and second-order boundary problems

D2w2m = −µ2mDw2m, w2m(±1) = w′2m(±1) = 0,

Pr−1Dθ2m = −ν2mθ2m, θ2m(±1) = 0,

Sc−1Dξ2m = −ρ2mξ2m, ξ′2m(±1) = 0,

where µ2m, ν2m, and ρ2m are the eigenvalues for the corresponding basis functions. For the temperature θ2m

and concentration ξ2m, we have trigonometric basis functions. The functions w2m proposed in [7] form a full
orthnormalized system

1∫
−1

wiDwj dz = −δij .

Substituting expansions (5) into system (3) and performing orthogonalization by the Galerkin method, we
obtain K = 3M ordinary differential equations for ar, bs, and ct of the form

∂ui
∂t

= Lij(ωt)uj , i, j = 3M, u(t) =

 ar
bs
ct

 , (6)

where the matrix L is periodic with a period 2π/ω and u(t) is a K-dimensional vector function. According to the
classical Floquet theory [8], all solutions of system (6) can be written as

u(t) = eλtu0(t) = γu0(t),
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Fig. 1. Amplitude of modulation η2 as a function of the inverse fre-
quency in the absence of the mean temperature gradient (η1 = 0): the
dot-and-dashed and solid curves show the boundaries of stability for
subharmonic disturbances and synchronous regimes, respectively.

where u0(t) is a vector with a period 2π/ω. Here, γ is called the Floquet multiplier and λ = λr + iλi is called the
characteristic index. For different independent initial conditions upi (0) = δip (p = 1, . . . ,K), system (6) is integrated
by the fourth-order Runge–Kutta method. The fundamental solutions taken at the end of the modulation period
upi (t) compose K columns of the monodromy matrix with the dimension K ×K whose eigenvalues are the Floquet
multipliers. The values of characteristic indices determine the stability of the basic quasi-equilibrium state. If λi is
ordered so that Re (λ1) > Re (λ2) > . . . > Re (λK), then the basic state is stable for Re (λ1) < 0. The condition
Re (λ1) = 0 determines the range of existence of periodic solutions in the space of parameters Gr, η1, η2, Pr ,
Sc, ε, ω, and k. The case Re (λ1) = 0, Im (λ1) = ω/2 corresponds to subharmonic disturbances with a period
twice as large as the period of the external action. If Re (λ1) = 0, Im (λ1) = ω, then the neutral disturbances
vary simultaneously with the forcing action, and their periods coincide. The pair of complex-conjugate eigenvalues
with a unit modulus [Re (λ1) = 0, Im (λ1) 6= 0] correspond to quasi-periodic neutral disturbances. For most
solutions found, 15 basis functions were used (M = 5). In test computations performed with 21 basis functions
(M = 7), convection thresholds varied by less than 1%. The following values of the Prandtl and Schmidt numbers
characterizing the gas mixture were used in all computations: Pr = 0.75 and Sc = 1.5.

3. Results of the Analysis. In the case of a constant temperature gradient, there are different regions
of instability on the plane (ε,Gr). In the absence of thermal diffusion (ε = 0 for Pr = 0.75), the equilibrium
is violated at Grcr = 142.37, which corresponds to the Rayleigh number for the layer with solid boundaries
(R = 16GrcrPr = 1708.5) determined by the layer thickness and temperature difference at the boundaries. In
the case of heating from below, the region of monotonic instability corresponds to the value ε > −0.1 and the region
of vibrational instability to ε < −0.1. Cellular disturbances are the most dangerous in this case [6]. For ε = −0.3,
the convection threshold (Grcr = 271.686) corresponds to the critical wavenumber kcr = 1.357 and the frequency
ω0 = 2.665. For heating from above (Gr < 0), the instability is possible in the case of anomalous thermal diffusion
(ε < 0); long-wave monotonic disturbances are critical.

The thresholds of instability of thermoconcentration convection in a variable thermal field as a result of
minimization in terms of the wavenumber k are shown in Figs. 1–5.

First, we consider the case of modulation with respect to the zero mean value of temperature (η1 = 0). The
modulation amplitude η2 corresponding to the stability boundary is plotted in Fig. 1 as a function of the inverse
frequency ln (1/ω) for a fixed value Gr = 260. Without modulation, the system is stable: Gr < Grcr = 271.686.
Hereinafter, the dot-and-dashed and solid curves refer to the boundaries of stability for subharmonic regimes and
growing synchronous disturbances, respectively. The boundaries of instability of different types intersect in the chart
of stability; the first two regions of instability are associated with subharmonic disturbances, and a further decrease
in frequency leads to alternation of the regions of synchronous and subharmonic instability. The mechanism of
destabilization includes the resonant interaction of the least stable vibrational mode with an eigenfrequency ω0 and
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Fig. 2 Fig. 3

Fig. 2. Modulation amplitude η2 versus the inverse frequency in the first resonant region of the
subharmonic response in the presence of the mean temperature gradient (η1 = 1) for Gr = 180 (1),
210 (2), 260 (3), and 269 (4).

Fig. 3. Critical wavenumbers kcr (a) and modulation amplitude η2 (b) versus the inverse frequency
for η1 = 1: the dashed curves are the boundaries of quasi-periodic regimes, the solid curves are the
boundaries of stability for synchronous regimes, and the dot-and-dashed curves are the boundaries
of stability for subharmonic disturbances.

temperature oscillations in a modulated thermal field. The greatest destabilization corresponds to the amplitude
η1 = 1.117 and is observed for the frequency ratio ω = 2.0 ' ω0. In the absence of the constant component of the
temperature gradient, the governing parameter is the product η2Gr. Thus, it is possible to obtain stability charts
for all values of Gr.

A nonzero constant component of the temperature gradient (η1 = 1) is responsible for the independence of
the regime parameters Gr and η2. The modulation amplitude η2 is plotted in Fig. 2 as a function of the inverse
frequency ln (1/ω) for various values of “subcritical” heating (Gr < Grcr). In the absence of modulation (η2 = 0),
the quasi-equilibrium of the fluid is stable. An increase in the modulation amplitude leads to emergence of growing
disturbances. The type of critical disturbances depends on frequency. The first resonant region, where the effect of
destabilization is manifested most clearly, corresponds to subharmonic disturbances relative to the external action;
its minimum is located at the frequency ω ' 5.33 ' 2ω0. To excite convection parametrically at high values of the
parameter (Grcr −Gr)/Grcr, one has to increase the modulation amplitude.

The behavior of the critical wavenumbers kcr and modulation amplitudes at the stability boundary in the
case of “supercritical” heating (Gr = 280 > Grcr) is shown in Fig. 3. Without modulation, the quasi-equilibrium
is unstable. An increase in the modulation amplitude leads to the appearance of stability regions (st) on the plane
(Gr, 1/ω), which are symmetric about the resonant frequency ω = 5.33 ' 2ω0. The lower boundary of these domains
is determined by the fundamental mode of quasi-periodic instability and corresponds to the maxima in the curves
kcr = kmax. The upper boundary of the stability regions is caused by parametric effects and corresponds to the
minima in the curves kcr = kmin with subharmonic or synchronous disturbances growing above it. A competition
of these modes is observed at comparatively low frequencies. In the region of stability relative to subharmonic
disturbances, a domain of synchronous instability appears. It is seen in Fig. 3 that modulation stabilizes the basic
state in a wide range of frequencies, but parametric instability is excited in the cases ω ' 2ω0 and ω ' ω0. With
increasing modulation amplitude, the range of resonant excitation increases.
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Fig. 4. Charts of stability in the plane (ε,Gr) in the presence of vibrations [5]
and in a modulated thermal field (ω = 2π and η1 = 1) for η2 = 1 (1) and 2 (2);
the remaining notation the same as in Fig. 3.

Fig. 5 Fig. 6

Fig. 5. Charts of stability in the plane (1/ω,Gr) in a modulated field (ε = −0.3, η1 = 1, and η2 = 1): the points
refer to temperature modulation; the remaining notation the same as in Fig. 3.

Fig. 6. Critical wavenumbers kcr versus 1/ω in a modulated thermal field (ε = −0.3, η1 = 1, and η2 = 1).

Figure 4 shows the boundaries of convective instability Gr(ε) for various methods of parametric actions
on the binary mixture (vertical vibrations of the layer [5] and modulation of the temperature gradient). The
modulation frequency is fixed: ω = 2π, and the modulation amplitude takes the values η2 = 1 and 2. The
dimensionless amplitude of vibrations is η2 = bΩ2/g (b is the amplitude and Ω is the cyclic frequency of vibrations).
The thresholds of long-wave disturbances existing in the case of heating from above remain almost constant with
changing the amplitude η2 and the method of the parametric action. This is related to specific features of the action
of the thermoconcentration (double diffusion) mechanism of instability in the binary mixture, which is caused by
the difference in characteristic times of heat conduction and diffusion.

In the region of the normal effect of thermal diffusion (ε > 0), temperature modulation has almost no effect
on the boundary of stability either; high-amplitude vibrations stabilize the quasi-equilibrium. In the case of an
anomalous Soret effect, temperature modulation exerts a stronger destabilizing effect on the quasi-equilibrium in
the region ε > −1; the instability is related to subharmonic disturbances. In the region ε < −1, vibrations with
a rather high amplitude (η2 = 2) have a greater destabilizing effect on the binary mixture than modulation of the
temperature gradient.
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The thresholds of convection in the plane (1/ω,Gr) for two types of the parametric action are shown in
Fig. 5 (ε = −0.3, η1 = 1, and η2 = 1). Figure 6 shows the behavior of the critical wavenumbers kcr for the case of
temperature modulation. The wavenumbers decrease monotonically inside each region of instability. At the points
of intersection of instability boundaries, a competition of two modes with different spatial periods is observed. At
high frequencies (ω > 1.25), temperature modulation has a stronger destabilizing effect on the quasi-equilibrium;
at low frequencies (ω < 1.25), the parametric instability under the action of vibrations occurs at lower values of Gr.

Conclusions. The problem of convective instability of a nonuniformly heated binary mixture with allowance
for the effect of thermal diffusion under the action of modulation of the transverse temperature gradient of an
arbitrary frequency is considered on the basis of the Boussinesq equations. At finite modulation frequencies, both
destabilization and stabilization of equilibrium are possible, depending on the characteristics of the parametric
action. The instability of the fluid may be caused by disturbances with different time dependences, which correspond
to a synchronous or subharmonic response to the external action or to quasi-periodic regimes. The boundaries of
instability regions are determined.

The author is grateful to B. I. Myznikova for valuable discussions.
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